請輸入產品關鍵字:
郵編:100083
聯系人:尤女士
電話:4008858216
傳真:
手機:13581534696
留言:發送留言
個性化:www.qbiotec.com
網址:www.qbiotec.com
商鋪:http://yis360.com/st289923/
Matrigen-為何要給細胞提供柔軟舒適的培養環境
點擊次數:2917 發布時間:2015-8-28
Why grow soft?
科學家一直都在研究用天然的或者合成的基質環境來培養細胞,從而能誘導細胞呈現應有的形態,這是在剛性的培養材質上是做不到的。不幸的是,讓細胞生長在柔軟的基質里或基質表面不僅價格昂貴,而且是很不切實際的。
Softwell克服了這些挑戰。它可以讓您的研究在柔軟的環境下細胞的行為。進一步講,它提供了不同柔軟度的環境,引導您發現不同類型細胞的形態,可以進行以下研究:
1. 干細胞自我更新(Stem cell self-renewal)[1,2]
2. 血統規格(Lineage specification)[3]
3. 癌細胞表性(Cancer cell phenotype)[4,5,6]
4. 纖維化(Fibrosis)[7,8]
5. 肝細胞功能(Hepatocyte function)[9,10,11]
6. 機械敏感性(Mechanosensing)[12,13,14]
引人注目的是,細胞是能夠感知環境柔軟度的改變并有所響應,您可以索要獲獎微電影鏈接。
Soft substrates for stem cells
改變干細胞培養環境的柔軟度(matrix stiffness),可以控制干細胞命運。提供給干細胞舒適的柔軟度,如下:
促進自我更新:取自小鼠的肌肉干細胞,給其提供zui舒適的柔軟環境(E=12kPa),如同在體內,有自我更新修復的能力[1];
維持多能性:在E=0.6kPa的基質上培養小鼠胚胎干細胞,在不添加外源性LIF因子的情況下,仍能形成同源性未分化克隆[2];
Direct lineage specification:成年人間充質干細胞培養在不同彈性(柔軟度)的基質上培養,如E=1,E=11和E43時,分別會直接向神經性,肌源性和成骨性分化[3]。
想了解更多信息,請點擊Matrigen彈性的細胞培養器皿產品綜合介紹
文獻如下:
1. Gilbert, P.M. et al. 1Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078-1081 (2010).
2. Chowdhury, F. et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010).
3. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 (2006).
4. Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254 (2005).
5. Levental, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906 (2009).
6. Tilghman, R.W. et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5, e12905 (2010).
7. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol 190, 693-706 (2010).
8. Wipff, P.-J., Rifkin, D.B., Meister, J.-J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol 179, 1311-1323 (2007).
9. Georges, P.C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol 293, G1147-1154 (2007).
10.Li, L. et al. Functional modulation of ES-derived hepatocyte lineage cells via substrate compliance alteration. Ann Biomed Eng 36, 865-876 (2008).
11.Semler, E.J., Lancin, P.A., Dasgupta, A. & Moghe, P.V. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng 89, 296-307 (2005).
12.Friedland, J.C., Lee, M.H. & Boettiger, D. Mechanically Activated Integrin Switch Controls α5β1 Function. Science 323, 642 -644 (2009).
13.Chan, C.E. & Odde, D.J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687-1691 (2008).
14.Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183 (2011).